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Abstract—In this paper we focus on the energy detector for
decision fusion in wireless sensor networks over multiple access
channels. More specifically, we derive analytical performance
in terms of global probability of false alarm and detection
(including asymptotic performance for large number of sensors)
when the fading is a Ricean mixture, i.e. channel coefficients
are sampled from a Gaussian mixture (GM) distribution. The
motivation for the GM is the ability to model real-world scenarios
while keeping mathematical tractability. Analytical results are
confirmed through numerical simulations.

I. INTRODUCTION

Distributed detection represents a task of interest in many
wireless sensor networks applications. Two architectures have
been investigated: (i) centralized [1], the sensors transmit their
local decisions to a fusion center which takes a (more reliable)
global decision by appropriately combining the received infor-
mation; (ii) decentralized [2], there is no fusion center and
each sensor collects the information from the others in order
to reach a reliable decision. Here, we focus on centralized
architectures. Commonly, they are based on parallel access
channels, where each sensor is provided with a non-interfering
dedicated channel to communicate with the fusion center [3].
Near-optimal fusion rules with full channel state information
available at the receiver have been proposed in [4].

Recently, the interfering nature of the wireless medium has
been exploited in the context of distributed detection [5]–[7].
Also, multiantenna processing techniques at the fusion center
have been investigated and compared in terms of performance,
complexity, and knowledge requirements [8], [9]. Finally,
energy detection was proven to be optimal in Rayleigh fading
channels [10].

In this paper we consider a decision-fusion rule based
on energy detection over Ricean-mixture fading channels.
More specifically, we analyze the case in which each channel
coefficient is modeled as a Gaussian mixture (GM). GMs
can take into account multi-modality, asymmetry, heavy tails,
and other characteristics that may be present in real-world
scenarios, though exhibiting interesting properties in terms of
mathematical tractability [11]. The main paper contribution is
the derivation of analytical expressions for system performance
in terms of global probabilities of false alarm and detection.

The outline of the paper is the following: Sec. II collects
preliminaries on GMs; Sec. III describes the system model
while Sec. IV the statistics for the decision with corresponding
system performance; Sec. V compares the performance of
simulated systems; final remarks are given in Sec. VI.

0This work has been partially funded by ERCIM and by CAMOS.

II. PRELIMINARIES ON GM

We use the following propositions for GM [11].

Proposition 1: Denote u ∼ NC(µ, σ2), then v = |u|2 is
scaled non-central chi-squared, v ∼ χ2

2(|µ|;σ2), with pdf

p(v) =
1

2σ2
exp

(
−v + |µ|2

2σ2

)
I0

(
|µ|
σ2

√
v

)
.

where I0(x) = 1
π

∫ π
0

exp (x cos(θ)) dθ is the modified Bessel
function of the first kind and zero order.

Proposition 2: Denote u ∼
∑M
m=1 ρmNC(µm, σ

2
m) a

complex GM with M components, i.e. such that its pdf is

p(u) =

M∑
m=1

ρm
2πσ2

m

exp

(
−|u− µm|

2

2σ2
m

)
,

with ρm ≥ 0 and
∑M
m=1 ρm = 1. Using Prop. 1

and the total probability theorem, it is readily shown that
v = |u|2 is a scaled non-central chi-squared mixture, v ∼∑M
m=1 ρmχ

2
2(|µm|;σ2

m), with its pdf being

p(v) =

M∑
m=1

ρm
2σ2

m

exp

(
−v + |µm|2

2σ2
m

)
I0

(
|µm|
σ2
m

√
v

)
.

Denoting Q(a; b) =
∫∞
b
x exp

(
−x

2+a2

2

)
I0 (ax) dx the Mar-

cum Q-function, its tail distribution is

Pr(v > v0) =

M∑
m=1

ρmQ

(
|µm|
σm

;

√
v0
σm

)
. (1)

Proposition 3: Consider a set of N independent and iden-
tically distributed (iid) complex GMs

un ∼
M∑
m=1

ρmNC
(
µm, σ

2
m

)
, n = 1, . . . , N ,

then the linear combination v =
∑N
n=1 cnun is a complex GM

with
(
M+N−1

N

)
components, i.e.

v ∼
M∑

m1=1

. . .

M∑
mN=1

N∏
n=1

ρmnNC

(
N∑
n=1

cnµmn ,

N∑
n=1

|cn|2σ2
mn

)
.

(2)

0Notation – Lower-case bold letters denote vectors, with an being the
nth element of a; 1N denotes the N -length vector whose elements are 1;
E{·} and (·)t denote expectation and transpose operators; Pr(A) denotes the
probability of the event A; p(a) denotes the probability density function (pdf)
of the random variable a; |a| denotes the modulus of a;

( `
m

)
= `!

m1!...mM !

is the multinomial coefficient; NC(µ, σ
2) denotes a circular proper normal

distribution with mean µ and variance 2σ2; ∼ means “distributed as”.
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III. SYSTEM MODEL

We consider K sensors sensing a binary source, each
taking autonomously a local decision. The two hypotheses are
denoted H0 and H1. We assume that the local sensing and
decision process is fully described by the local probability of
false alarm (pf ) and the local probability of detection (pd),
both assumed to be stationary, identical, and conditionally
independent given the specific hypothesis. Sensors, each with
one single transmit antenna, communicate simultaneously their
decision to a fusion center whose aim is to provide a robust
decision on the basis of the multiple received information. All
the sensors employ the same binary modulation, for energy
saving purposes we consider OOK modulation, with identical
parameters (transmission pulse, carrier frequency, etc.). We
assume that the system is fully synchronized.

We denote xk ∈ X = {0, 1} the symbol transmitted by the
kth sensor encoding its local decision (we assume 0 for H0

and 1 for H1); hk the fading channel coefficient on the link
between the kth sensor and fusion center; y the signal received
by the fusion center; and w the additive white Gaussian noise
at the receiver. Channel coefficients from the various links are
assumed iid complex GM with M components, i.e.

hk ∼
M∑
m=1

ρmNC
(
µm, σ

2
m

)
.

We will explicitly report results for two special cases: (i) one
nonzero-mean component, namely Rice fading; (ii) two zero-
mean components, here called 2ZM fading. Those are the two
simplest extensions for the case with one single zero-mean
component analyzed in [10]. More specifically, in Rice fading
(we omit the subscript for ease of notation) hk ∼ NC

(
µ, σ2

)
where µ is real1, while in 2ZM fading hk ∼ ρ1NC

(
0, σ2

1

)
+

ρ2NC
(
0, σ2

2

)
.

The discrete-time model for the received signal is

y = htx+ w . (3)

where x = (x1, . . . , xK)
t denotes the transmitted vector (of

local decisions) and h = (h1, . . . , hK)
t is the channel vector.

IV. DECISION FUSION

The decision is usually performed as a test comparing a
signal-dependent statistic (λ(y)) and a fixed threshold (γ)

λ(y)
Ĥ=H1

≷
Ĥ=H0

γ , (4)

where Ĥ denotes the estimated hypothesis. Performance is
evaluated in terms of global probability of false alarm (qf )
and global probability of detection (qd), defined as follows

qf = Pr (λ > γ|H0) , qd = Pr (λ > γ|H1) . (5)

It is worth noticing that Pr(λ > γ|Hi) describes both qf and
qd (with i = 0 and i = 1, respectively). The threshold in
Eq. (4) is usually selected according to Bayes or Neyman-
Pearson criteria [12]. For system performance evaluation, we
consider the behavior of the global probability of detection (qd)
versus the global probability of false alarm (qf ), commonly
denoted receiver operating characteristic (ROC).

1Assuming real µ does not affect generality as explained in [6].

A. Optimal Test

The log-likelihood ratio (LLR) of the received signal under
the two hypotheses provides the optimal test

λ(y) = log

(
p(y|H1)

p(y|H0)

)
= log

(∑K
`=0 p(y|`) Pr(`|H1)∑K
`=0 p(y|`) Pr(`|H0)

)
,

(6)

where ` = xt1K is the number of sensors transmitting 1.
Eq. (6) is explained by noticing that: OOK is the modulation
format; channel coefficients are iid.

From Prop. (3), it is straightforward to show that

p(y|`) =
∑

mt1M=`

(
`

m

)
exp(mt log(ρ))

2π(mtσ2 + σ2
w)
×

exp

(
− |y −mtµ|2

2(mtσ2 + σ2
w)

)
, (7)

where m = (m1, . . . ,mM )t is a vector of integers (with
mu representing the number of links experiencing the uth
component of the complex GM), µ = (µ1, . . . , µM )t and
σ2 = (σ2

1 , . . . , σ
2
M )t are vectors collecting the mean and the

variance of each component. Eq. (7) clearly shows that the con-
ditional received signal (y|`) is a GM with L(`) =

(
M+`−1

`

)
components, denoted for sake of simplicity as

y|` ∼
L(`)∑
m=1

θm(`)NC
(
νm(`), ω2

m(`)
)
. (8)

In the case of Rice fading, Eq. (8) simplifies in

p(y|`) =
1

2π (`σ2 + σ2
w)

exp

(
− |y − `µ|2

2 (`σ2 + σ2
w)

)
,

while in the case of 2ZM fading we get

p(y|`) =
∑̀
m=0

(
`

m

)
(ρ1)m(ρ2)`−m

2π (mσ2
1 + (`−m)σ2

2 + σ2
w)
×

exp

(
− |y|2

2 (mσ2
1 + (`−m)σ2

2 + σ2
w)

)
.

However, the optimal test is computationally expensive2

(exponential with K) and additionally has high knowledge re-
quirements (statistical channel state information (CSI), signal-
to-noise ratio (SNR) and local sensor performance).

Finally, it is worth noticing that for conditionally iid sensors
Pr(`|Hi) =

(
K
`

)
p`(1 − p)K−`, where p = pf (resp. p = pd)

in the case H0 (resp. H1).

B. Energy Test

In the case of OOK, a common simpler alternative is
obtained replacing the LLR with the energy of the received
signal, i.e.

λ(y) = |y|2 ,

2It is worth mentioning that in the specific case of Rice fading, a low-
complexity test with optimal performance has been found [6].
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which apparently requires little computational complexity and
also has the advantage that neither CSI nor SNR nor local
sensor performance are needed. Such a test has been proved
to be optimal in Rayleigh fading scenarios [6], [10].

Using the total probability theorem and combining Eq. (1)
in Prop. 2 with Eq. (5), we get

Pr(λ > γ|Hi) =

K∑
`=0

L(`)∑
m=1

Pr(`|Hi)θm(`)Q

(
|νm(`)|
ωm(`)

;

√
γ

ωm(`)

)
.

(9)

In the case of Rice fading, Eq. (9) simplifies in

Pr(λ > γ|Hi) =

K∑
`=0

Pr(`|Hi)Q

(
`|µ|√

`σ2 + σ2
w

;

√
γ√

`σ2 + σ2
w

)
.

(10)

while in the case of 2ZM fading we get

Pr(λ > γ|Hi) =

K∑
`=0

∑̀
m=0

Pr(`|Hi)
(
`

m

)
ρm1 ρ

`−m
2 ×

exp

(
− γ

2 (mσ2
1 + (`−m)σ2

2 + σ2
w)

)
.

(11)

C. Asymptotic Performance of the Energy Detector

If the number of sensors is large (K >> 1), from Eq. (3)

y√
K
|Hi ≈

1√
K

K∑
k=1

(hkxk|Hi) . (12)

By using the central limit theorem [13], the real (resp. the
imaginary) part of y√

K
|Hi is Gaussian with mean

√
Kµ̃i =√

Kp
∑M
m=1 ρmµm and variance σ̃2

i = p
∑M
m=1 ρm(σ2

m +

µ2
m) − µ̃2

i (resp.
√
Kµ̌i = 0 and σ̌2

i = p
∑M
m=1 ρmσ

2
m), i.e.

Eq. (12) describes an improper complex Gaussian.

In the case of Rice fading, and analogously if there is at
least one nonzero mean component, the real part dominates
and performance approach

Pr(λ > γ|Hi) =Q

(√
γ −
√
Kµ̃i

σ̃i

)
+Q

(√
γ +
√
Kµ̃i

σ̃i

)
,

with µ̃i = pµ and σ̃2
i = pσ2 + p(1− p)µ2. Differently, in the

case of 2ZM fading, and analogously if all the components
are zero mean, Eq. (12) describes a proper complex Gaussian
(σ̃2
i = σ̌2

i ) and performance approach

Pr(λ > γ|Hi) = exp

(
− γ

2σ̃2
i

)
,

with σ̃2
i = p(ρ1σ

2
1 + ρ2σ

2
2).

V. SIMULATION RESULTS

Numerical results refer to Monte Carlo simulations with
105 runs using MATLAB. We considered sensor networks with
K = 5 and K = 10 sensors, whose local performance are
(pf , pd) = (0.05, 0.5) unless differently specified.

Both Rice fading and 2ZM fading are considered. For both
types of fading, we characterize the channels with respect to
two parameters: (i) the ratio between the average power of
the two components3 (denoted ξ); (ii) the average total power
(denoted ζ). More specifically, they are expressed as follows
(left for Rice fading and right for 2ZM fading){

ξ = |µ|2
2σ2

ζ = |µ|2 + 2σ2
,

{
ξ =

ρ1σ
2
1

ρ2σ2
2

ζ = 2ρ1σ
2
1 + 2ρ2σ

2
2

.

Also, only channels with unitary average power will be con-
sidered, i.e. ζ = 1, both for Rice fading and 2ZM fading,
and in the latter case with equally probable components
(ρ1 = ρ2 = 1/2). ROC curves are labeled with respect to
the SNR defined as 1/σ2

w.

Fig. 1 shows the (modulus) channel gain pdf for Rice
fading and 2ZM fading with different ξ. It is apparent how
increasing ξ makes the statistics more concentrated about the
unit in the case of Rice fading, while more L-shaped with a
peak close to zero in the case of 2ZM fading. Also, it is worth
mentioning that the Rayleigh fading (in which the energy
detector is the optimal receiver) is represented by Rice fading
with ξ = 0 and by 2ZM fading with ξ = 1 (ρ1 = ρ2 = 1/2).

Fig. 2 shows the ROC curves for sensor networks at
SNR∈ {0, 5} dB in the case of Rice fading and 2ZM fading.
Solid and dashed lines refer to the analytical expressions, i.e.
Eqs. (10) and (11), while circle and diamond markers refer
to numerical simulations; a black asterisk represents the local
performance. The improvement with respect to the SNR as
well as the number of sensors (K) is apparent. Additionally,
the impact of the fading statistics is reflected through the
different shape of the ROC curves.

Fig. 3 shows the impact of the parameter ξ (in the case of
Rice fading and 2ZM fading) on the performance for sensor
networks at SNR= 5 dB and qf = 0.05. It is apparent how,
in the case of Rice fading, the presence of the line-of-sight
component produces a beneficial effect in terms of absolute
performance. However, it is worth noticing that the energy
detector is optimal only in the case of ξ = 0 (Rayleigh
fading). Differently, in the case of 2ZM fading, the absolute
performance are maximum at ξ = 1 (Raylegh fading) when the
energy detector is also optimal, and slowly decrease in other
scenarios. Fig. 4 shows the impact of both ξ and K on the
performance for both Rice fading and 2ZM fading. The effects
of the channel statistics on system performance are apparent.

Finally, Figs. 5 and 6 show the validity of the asymptotic
results in the case of Rice fading and 2ZM fading, respectively.
In both cases pd = 0.5, while pf = 0.3 (resp. pf = 0.05) for
Rice fading (resp. 2ZM fading). It is worth noticing that the
asymptotic performance: (i) in the case of Rice fading improve
with K because of the line-of-sight and approach soon the
ideal point (qf , qd) = (0, 1); (ii) in the case of 2ZM fading are
independent of K because of all components are zero mean.
Also, the convergence to the asymptotic performance appears
slower in the case of 2ZM fading than for Rice fading. Finally,

3In the case of Rice fading, the two components refer to the line-of-
sight component (represented by the nonzero mean) and to the non-line-of-
sight component (represented by the Gaussian-shaped random scattering). In
the case of 2ZM fading, the two components refer to the two zero-mean
components of the GM.
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Fig. 1. Impact of ξ on the pdf of |hk| for Rice
and 2ZM fading.
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Fig. 2. ROC for both Rice and 2ZM fading with
ξ = 10. Lines and markers refer to analytical re-
sults and numerical simulations. The black asterisk
denotes the local performance.
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Fig. 3. Impact of ξ for Rice and 2ZM fading
at SNR= 5 dB and qf = 0.05 with (pf , pd) =
(0.05, 0.5).
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Fig. 4. Impact of ξ and K for both Rice (upper)
and 2ZM (lower) fading at SNR= 5 dB and qf =
0.05 with (pf , pd) = (0.05, 0.5).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

qf

q d

 

 

K=10; SNR=0 dB
K=10; SNR=10 dB
K=10; Asymptotic
K=50; SNR=0 dB
K=50; SNR=10 dB
K=50; Asymptotic

Fig. 5. Asymptotic performance with (pf , pd) =
(0.3, 0.5) for Rice fading with ξ = 10.
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Fig. 6. Asymptotic performance with (pf , pd) =
(0.05, 0.5) for 2ZM fading with ξ = 10.

it is worth noticing that asymptotic results, although obtained
by neglecting the noise, are not upper bounds (apparently in
both Figs. 5 and 6) because of the Gaussian approximation.

VI. CONCLUSION

Energy detector for decision fusion in wireless sensor
networks over multiple access channels with Ricean-mixture
fading (i.e. channel coefficients are GM distributed) has been
analyzed. We derived analytical performance in terms of global
probability of false alarm and detection. Analytical results,
including asymptotic performance for large number of sensors,
are confirmed through numerical simulations.
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